PHYSICS

1. If Force $=(x /$ density $)+C$ is dimensionally correct, the dimension of x are -
(A) MLT^{-2}
(B) MLT^{-3}
(C) $\mathrm{ML}^{2} \mathrm{~T}^{-3}$
(D) $\mathrm{M}^{2} \mathrm{~L}^{-2} \mathrm{~T}^{-2}$
2. The dimensions of electrical conductivity is
(A) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-3} \mathrm{~T}^{3} \mathrm{~A}^{2}\right]$
(B) $\left[\mathrm{M}^{-1} \mathrm{~L}^{-2} \mathrm{~T}^{3} \mathrm{~A}^{1}\right]$
(C) $\left[\mathrm{M}^{2} \mathrm{~L}^{-3} \mathrm{~T}^{1} \mathrm{~A}^{2}\right]$
(D) None
3. The physical quantities not having same dimensions are -
(A) Momentum and
(B) Stress and Young's Planck's constant modulus
(C) Speed and ($\left.\square_{0} \square_{0}\right)^{-1 / 2(D) ~ T o r q u e ~ a n d ~ w o r k ~}$
4. A ball is released from the top of a tower of height h meters. It takes T seconds to reach the ground. What is the position of the ball at $\mathrm{T} / 3$ second -
(A) h/9 meters from the ground
(C) $8 \mathrm{~h} / 9$ meters from the ground
(B) $7 \mathrm{~h} / 9$ meters from the ground
(D) $17 \mathrm{~h} / 18$ meters from the ground
5. Which of the following statements is false for a particle moving in a circle with a constant angular speed?
(A) The acceleration vector points to the centre of B) The acceleration vector the circle
(C) The velocity vector is tangent to the circle
(D) The velocity and acceleration vectors are perpendicular to each other
6. A thief stole a box full of valuable articles of weight W and while carrying it on his back, he jumped down a wall of height h from the ground. Before he reached the ground, he experienced a load of
(A) 2 W
(B) W
(C) W/2
(D) Zero
7. A force of 10 Newton acts on a body of mass 20 kg for 10 seconds. The change produced in momentum is given by-
(A) $5 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
(B) $100 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
(C) $200 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
(D) $2000 \mathrm{~kg} \mathrm{~m} / \mathrm{sec}$
8. A particle moves in the xy plane under the action of a force \mathbf{F} such that the value of its linear momentum (\mathbf{P}) at any time t is, $P_{X}=2 \cos t, P_{y}=2 \sin t$. The angle \square between \mathbf{P} and \mathbf{F} at that time t will be -
(A) 0°
(B) 30°
(C) 90°
(D) 180°
9. A spring toy weighing 1 kg on a spring balance suddenly jumps upward. A boy standing near the toy notices that the scale of the balance reads 1.05 kg . In this process the maximum acceleration of the toy is ($\mathrm{g}=10 \mathrm{~m} \mathrm{sec}^{-2}$)
(A) $0.05 \mathrm{~m} \mathrm{sec}^{-2}$
(B) $0.5 \mathrm{~m} \mathrm{sec}^{-2}$
(C) $1.05 \mathrm{~m} \mathrm{sec}^{-2}$
(D) $1 \mathrm{~m} \mathrm{sec}^{-2}$
10. A billiard ball moving at a speed $2 \mathrm{~m} / \mathrm{s}$ strikes an identical ball initially at rest, at a glancing blow. After the collision one ball is found to be moving at a speed of $1 \mathrm{~m} / \mathrm{s}$ at 60° with the original line of motion. The velocity of the other ball shall be -
(A) $(3)^{1 / 2} \mathrm{~m} / \mathrm{s}$ at 30° to the original direction.
(B) $1 \mathrm{~m} / \mathrm{s}$ at 60° to the
original direction.
(C) $(3)^{1 / 2} \mathrm{~m} / \mathrm{s}$ at 60° to the original direction.
(D) $1 \mathrm{~m} / \mathrm{s}$ at 30° to the original direction.
11. A ball moving on a horizontal frictionless plane hits an identical ball at rest with a velocity of $50 \mathrm{~cm} / \mathrm{sec}$. If the collision is elastic, calculate the speed imparted to the target ball if the speed of the striking ball after the collision is $30 \mathrm{~cm} / \mathrm{sec}$.
(A) $20 \mathrm{~cm} / \mathrm{sec}$
(B) $30 \mathrm{~cm} / \mathrm{sec}$
(C) $40 \mathrm{~cm} / \mathrm{sec}$
(D) $50 \mathrm{~cm} / \mathrm{sec}$
12. Two bodies of masses 10 kg and 5 kg moving on concentric orbits of radii R and r such that their period of revolution are same. The ratio of their centripetal acceleration is -
(A) $\frac{\mathrm{R}}{\mathrm{r}}$
(B) $\frac{\mathrm{r}}{\mathrm{R}}$
(C) $\frac{\mathrm{R}^{2}}{\mathrm{r}^{2}}$
(D) $\frac{\mathrm{r}^{2}}{\mathrm{R}^{2}}$
13. When a mass rotates about any axis, the direction of the angular velocity will be -
(A) towards radius
(B) towards the tangent to the orbit
(C) at an angle of 45° to the plane of rotation
(D) along the direction of axis of rotation
14. A satellite S is moving in an elliptical orbit around the earth. The mass of the satellite is very small compared to the mass of the earth.
(A) The acceleration of S is always directed towards the centre of the earth
(B) The angular momentum of about the centre of the earth changes in direction, but its magnitude remains constant
(C) The total mechanical energy of S varies periodically with time
(D) The linear momentum of remains constant in magnitude
15. A mass m is raised from a distance 2 Re from surface of earth to 3 Re . Work done to do so against gravity will be
(A) $\frac{\mathrm{Mg} \mathrm{Re}}{10}$
(B) $\frac{\mathrm{Mg} \mathrm{Re}}{11}$
(C) $\frac{\mathrm{Mg} \mathrm{Re}}{12}$
(D) $\frac{\mathrm{Mg} \mathrm{Re}}{14}$

CHEMISTRY

16. If water samples are taken from sea, rivers, clouds, lake or snow, they will be found to contain H_{2} and O_{2} in the fixed ratio of $1: 8$. This indicates the law of -
(A) Multiple proportion
(B) Definite proportion
(C) Reciprocal proportion
(D) None of these
17. CaCO_{3} is 90% pure. Volume of CO_{2} collected STP when 10 gms of CaCO_{3} is decomposed is -
(A) 2.016 litres
(B) 1.008 litres
(C) 10.08 litres
(D) 20.16 litres
18. The number of unpaired electrons in Zn^{+2} -
(A) 0
(B) 1
(C) 2
(D) 3
19. For a d-electron, the orbital angular momentum is
(A) $\sqrt{6} \mathrm{~h} / 2$
(B) $\sqrt{2} \mathrm{~h} / 2$
(C) $h / 2 \square$
(D) $2 h / 2 \square$
20. The number of electrons in Na , having $\mathrm{n}+\square=3$
(A) 4
(B) 6
(C) 7
(D) 8
21. Which of the following is largest -
(A) Cl^{-}
(B) S^{2-}
(C) Na^{+}
(D) F^{-}
22. $\mathrm{Ce}^{3+}, \mathrm{La}^{3+}, \mathrm{Pm}^{3+}$ and Yb^{3+} have ionic radii in the increasing order as -
(A) $\mathrm{La}^{3+}<\mathrm{Ce}^{3+}<\mathrm{Pm}^{3+}$
(B) $\mathrm{Yb}^{3+}<\mathrm{Pm}^{3+}<\mathrm{Ce}^{3+}$ $<\mathrm{Yb}^{3+}$
$<\mathrm{La}^{3+}$
(C) $\mathrm{La}^{3+}=\mathrm{Ce}^{3+}<\mathrm{Pm}^{3+}$
(D) $\mathrm{Yb}^{3+}<\mathrm{Pm}^{3+}<$
< Yb^{3+}
$\mathrm{La}^{3+}<\mathrm{Ce}^{3+}$
23. In a triple bond there is sharing of:
(A) 3 electrons
(B) 4 electrons
(C) Several electrons
(D) 6 electrons
24. In compounds of type ECl_{3}, where $\mathrm{E}=\mathrm{B}, \mathrm{P}, \mathrm{As}$ or Bi , the angles $\mathrm{Cl}-\mathrm{E}-\mathrm{Cl}$ for different E are in the order -
(A) $\mathrm{B}>\mathrm{P}=\mathrm{As}=\mathrm{Bi}$
(B) $\mathrm{B}>\mathrm{P}>\mathrm{As}>\mathrm{Bi}$
(C) $\mathrm{B}<\mathrm{P}=\mathrm{As}=\mathrm{Br}$
(D) $\mathrm{B}<\mathrm{P}<\mathrm{As}<\mathrm{Bi}$
25. In acidic medium, equivalent weight of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ $(\mathrm{Mol} . \mathrm{wt} .=\mathrm{M})$ is-
(A) $\mathrm{M} / 3$
(B) $\mathrm{M} / 4$
(C) $M / 6$
(D) $\mathrm{M} / 2$
26. Equivalent weight of Mn^{3+} in the following reaction is $(\mathrm{Mn}=55)$
$\mathrm{Mn}^{3+}-\square \mathrm{Mn}^{2+}+\mathrm{MnO}_{2}$
(A) 27.5
(B) 55
(C) 110
(D) 165
27. Which one of the following has the smallest heat of hydrogenation per mole ?
(A) 1-Butene
(B) trans-2-Butene
(C) cis-2-Butene
(D) 1,3-Butadiene
28. The correct order of increasing acid strength of the compounds
(a) $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(b) $\mathrm{MeOCH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(c) $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$
(d)

(A) $\mathrm{d}<\mathrm{a}<\mathrm{c}<\mathrm{b}$
(B) d $<$ a $<$ b $<$ c
(C) $a<d<c<b$
(D) b $<$ d $<$ a $<$ c
29. m-directing character of $-\mathrm{C}=\underset{\mathrm{Cl}}{\mathrm{Cl}}$ is caused by
(A) - I effect
(B) $-M$ effect
(C) $(-) \quad$ ve
hyper(D) All conjugation
30. Ortho-Nitrophenol is less soluble in water than p -and m Nitrophenols because
(A) o-Nitrophenol shows Intramolecular H bonding
(C) Melting point of oNitrophenol is lower than those of m - and p -isomers
(B) o-Nitrophenol shows Intermolecular H bonding
(D) o-Nitrophenol is more volatile in steam than those of m - and p isomers

MATHEMATICS

31. The set $\{x: x \square N, x$ is prime and $3<x<5\}$ is-
(A) $\{4\}$
(B) $\{3,5\}$
(C) Void
(D) Non - Void
32. Let $\mathrm{P}=\{\square: \sin \square=1 / \sqrt{2}: 0<\square<90\}$ and $\mathrm{Q}=\{\square$: $\cos \square=1 / \sqrt{2}: 0<\square<90\}$ be two sets. Then
(A) $\mathrm{P} \square \mathrm{Q}$ and $\mathrm{Q}-\mathrm{P}$
(B) $\mathrm{Q} \square \mathrm{P}$
(C) $\mathrm{P} \square \mathrm{Q}$
(D) $P=Q$
33. If $A=\{x \mid x / 2 \square Z, 0 \square \square x \square 10\}$, $B=\{x \mid x$ is one digit prime $\}$
$C=\{x \mid x / 3 \square N, x \square 12\}$,
Then $\mathrm{A} \square(\mathrm{B} \square \mathrm{C})$ is equal to-
(A) $\{2,6\}$
(B) $\{3,6,12\}$
(C) $\{2,6,12\}$
(D) $\{6,8\}$
34. Let $f: R \square \square R$ defined by $f(x)=\frac{\sin ([x] \pi)}{x^{2}+2 x+4}$, [.] $=$ G.I.F., then which one is not true -
(A) f is periodic
(B) f is even
(C) f is many-one
(D) f is onto
35. If $f: \square \square \square, f(x)=x^{2}-x$, then f is -
(A) one-one onto
(B) one-one into
(C) many-one onto
(D) many-one into
36. The period of function $|\cos 2 \mathrm{x}|$ is -
(A)
(B) $\square / 2$
(C) $4 \square$
(D) $2 \square$
37. The equation $\mathrm{k}\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)-\mathrm{x}-\mathrm{y}+\mathrm{k}=0$ represents a real circle, if-
(A) $\mathrm{k}<\sqrt{2}$
(B) $\mathrm{k}>\sqrt{2}$
(C) $\mathrm{k}>1 / \sqrt{2}$
(D) $0<|\mathrm{k}| \square \frac{1}{\sqrt{2}}$
38. The circum-circle of the quadrilateral formed by the lines $x=a, x=2 a, y=-a, y=a$ is-
(A) $x^{2}+y^{2}-3 a x-a^{2}=0$
(B) $x^{2}+y^{2}+3 a x+a^{2}=0$
(C) $x^{2}+y^{2}-3 a x+a^{2}=0$
(D) $x^{2}+y^{2}+3 a x-a^{2}=0$
39. The x coordinates of two points A and B are roots of equation $x^{2}+2 x-a^{2}=0$ and y coordinate are roots of equation $y^{2}+4 y-b^{2}=0$ then equation of the circle which has diameter AB is-
(A) $(\mathrm{x}-1)^{2}+(\mathrm{y}-2)^{2}=5$
(B) $(x+1)^{2}+(y+2)^{2}=$ $+a^{2}+b^{2}$ $\sqrt{\left(5+a^{2}+b^{2}\right)}$
(C) $(x+1)^{2}+(y+2)^{2}=$
(D) $(\mathrm{x}+1)^{2}+(\mathrm{y}+2)^{2}=5$ $\left(a^{2}+b^{2}\right)$ $+\mathrm{a}^{2}+\mathrm{b}^{2}$
40.

$\lim _{x \rightarrow 0} \frac{e^{x}+e^{-x}-2 \cos x}{x \sin x}$ equals-
(A) 1
(B) 2
(C) -1
(D) -2
41.
$\lim _{x \rightarrow 0} \frac{\sqrt{x} \tan x}{\left(\mathrm{e}^{x}-1\right)^{3 / 2}}$ equals-
(A) 0
(B) 1
(C) $1 / 2$
(D) 2
42.
$\lim _{h \rightarrow 0} 2\left[\frac{\sqrt{3} \sin \left(\frac{\pi}{6}+h\right)-\cos \left(\frac{\pi}{6}+h\right)}{\sqrt{3} h(\sqrt{3} \cosh h \sin h)}\right]$ is equal to
(A) $2 / 3$
(B) $4 / 3$
(C) $-2 \sqrt{3}$
(D) $-4 / 3$
43. From a group of 5 boys and 3 girls, three persons are chosen at random. The probability that there are more girls than boys is-
(A) $4 / 7$
(B) $3 / 8$
(C) $2 / 7$
(D) $5 / 8$
44. The items produced by a firm are supposed to contain 5% defective items. The probability that a sample of 8 items will contain less than 2 defective items, is-
(A) $\frac{27}{20}\left(\frac{19}{20}\right)^{7}$
(B) $\frac{533}{400}\left(\frac{19}{20}\right)^{6}$
(C) $\frac{153}{20}\left(\frac{1}{20}\right)^{7}$
(D) $\frac{35}{16}\left(\frac{1}{20}\right)^{6}$
45. A bag contains 3 white and 3 black balls. Balls are drawn one by one without replacing them in the bag. The probability that drawing ball will be in alternate colors is-
(A) $1 / 10$
(B) $5 / 21$
(C) $1 / 2$
(D) None of these

